每个人考研的目的都不同,但相同的是追求更高的学历,拿一张更好看的文凭,虽说现在浮躁的社会中“读书无用论”,“考研无用论”漫天遍野,但请你们相信,说这样话的人,一定是没有读过研的人,且不从大数据去分析研究生在总人口中的占有率,看看你周边的人,你就知道你为什么会考研...
真心:对考生负责,考生的满意是其孜孜不倦的永恒追求
专心:专注做考研服务,将考研专业课信息系统化和专业化
热心:热爱考研事业,热衷于研究和解决考生所遇到的疑难问题
细心:考研将做到学员满意,为考生提供标准化的服务
耐心:培养高品质咨询团队,为考生提供多方位考研指导
考研复习突出重点,有的放矢,全面复习,不意味着平均分配精力,一定要突出重点,或者说先了解三个次的要求,在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌握,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点,在历年考试中,这方面考题出现的概率较大,主要内容理解透了,其它的内容和方法迎刃而解。
随时可入住;班主任督学监管,院校分析师一对一定制考研规划。
基础扎实、有明确的考研目标及复习规划、学习节奏好、缺乏学习环境和氛围。
全日制闭环安全管理;学习环境干净整洁、学习氛围浓厚;住宿环境温馨舒适。
整理了考研数学必考考点,供考研的同学参考,希望能帮到大家! 整理了考研数学必考考点,供考研的同学参考,帮助考生在这阶段段整理总结此部分的内容。 一、高等数学 高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占%,数学二中占%,重点难点较多。具体说来,大家需要重点掌握的知识点有几以下几点 .函数、极限与连续主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的数或确定方程在给定区间上有无实根。 .一元函数微分学主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。 .一元函数积分学主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。 .多元函数微分学主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。 .多元函数的积分学包括二重积分在各种坐标下的计算,累次积分交换次序。数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。 .微分方程及差分方程主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。差分方程的基本概念与一介常系数线形方程求解方法 由于微积分的知识是一完整的体系,考试的题目往往带有很强的综合性,跨章节的题目很多,需要考生对整学科有一完整而系统的把握。 二、概率论与数理统计 在数学的三门科目中,同时它还是考研数学中的难点,考生得分率普遍较低。与微积分和线性代数不同的是,概率论与数理统计并不强调解题方法,也很少涉及解题技巧,而非常强调对基本概念、定理、公式的深入理解。其主要知识点有以下几点 .随机事件和概率包括样本空间与随机事件;概率的定义与性质(含古典概型、几何概型、加法公式);条件概率与概率的乘法公式;事件之间的关系与运算(含事件的*性);全概公式与贝叶斯公式;伯努利概型。 .随机变量及其概率分布包括随机变量的概念及分类;离散型随机变量概率分布及其性质;连续型随机变量概率密度及其性质;随机变量分布函数及其性质;常见分布;随机变量函数的分布。 .二维随机变量及其概率分布包括多维随机变量的概念及分类;二维离散型随机变量联合概率分布及其性质;二维连续型随机变量联合概率密度及其性质;二维随机变量联合分布函数及其性质;二维随机变量的边缘分布和条件分布;随机变量的*性;两随机变量的简单函数的分布。 .随机变量的数字特征随机变量的数字期望的概念与性质;随机变量的方差的概念与性质;常见分布的数字期望与方差;随机变量矩、协方差和相关系数。 .大数定律和中心极限定理,以及切比雪夫不等式。 .数理统计与参数估计 三、线性代数 一般而言,在数学三科目中,很多同学会认为线性代数比较简单。事实上,线性代数的内容纵横交错,环环相扣,知识点之间相互渗透很深,因此不仅出题角度多,而且解题方法也是灵活多变,需要在夯实基础的前提下大量练习,归纳总结。线性代数的重要知识点主要有代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化。 基础阶段的复习比较重要的是吃透基本概念,理清知识脉络。这阶段的学习应该以课本为主,题目可以适量地做一些。做题的目的是为了巩固基本知识,不要为了做题而做题。一般来说,将课本上的课后题做三分之一到一半即可。这阶段扎扎实实打好基础,再通过后阶段强化冲刺的不断巩固提升,就能在最终的考试中取得好成绩了。最后,祝大家复习顺利。
更多培训课程,学习资讯,课程优惠,课程开班,学校地址等学校信息,请进入
教育新闻
详细了解
你也可以留下你的联系方式,让课程老师跟你详细解答: 在线咨询