一.函数、极限与连续
求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。
二.一元函数微分学
求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。
三.一元函数积分学
计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。
这一部分主要以计算应用题出现,只需多加练习即可。
四.向量代数和空间解析几何
计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。
五.多元函数的微分学
判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。
六.多元函数的积分学
二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。
七.微分方程
求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。
总之,数学要想考高分,考生必须认真系统地按照考试大纲的要求全面复习,掌握数学的基本概念、基本方法和基本定理。注意抓题型的解决方法和技巧,不断总结。而这一切的获得,都是建立在大量的做习题的基础上的,但是做习题不仅仅是追求量,还要保证质,所谓“质”,就是彻底理解所做过的每一道题,而这一点通常显的更为重要!
核心教学优势,值得信赖
海文考研线上钻石班怎么样?海文考研钻石卡全程采用线上授课的教学方式,是专为考研学员开设的,对于基础一般的学员,展开全科培训,包括公共课培训,专业课培训,根据学员基础,定制课程培训方案,入学可以选择保分方案,名师和做题方法的全面讲解,帮助学员全面提升做题水平,取得研究生考试的高分;针对研究生考试基础一般的学员开设,为大家提供全科的培训,包括公共课培训和专业课培训,我们为根据每个学员的学习基础,报考院校进行全面的辅导,大家在入学的时候可以选择一个合适的保分方案,名师帮助学员顺利的拿到研究生考试的高分...
Multiple battalions to choose from
金融硕士定向营
心理学定向营
会计硕士定向营
临床医学定向营
法律硕士定向营
翻译硕士定向营
经济学定向营
计算机定向营
考研要树立正确的考研观:追逐自己的兴趣。很多人的本科专业不是自己的兴趣所在。其原因主要是当初填报专业的时候对所报考专业的研究领域、应用价值、发展前景一无所知,或是因为分数低而被硬性调剂的,或是由父母、亲人代为选择的。进了大学之后,他们才发现自己对所学专业实在提不起兴趣,通过某些途径与机缘巧合,反而对其他专业产生了兴趣,于是想在自己感兴趣的专业领域深造和发展。此外,当你在工作岗位上待了几年之后,终于发现了自己的兴趣所在,于是想在感兴趣的领域深造,那么考研进而读研也是理想的选择。只有热爱自己的专业,才能做出非凡的成绩。
更多培训课程,学习资讯,课程优惠,课程开班,学校地址等学校信息,请进入
教育新闻
详细了解
你也可以留下你的联系方式,让课程老师跟你详细解答: 在线咨询
只要一个电话
我们免费为您回电